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Abstract — The problem of reducing to a minimum the mass of a convective annular/circular fin at the

prescribed magnitude of the heat flux is considered. The limiting case of minimization is obtained at the

temperature of the outer edge of the fin differing from the temperature of the environment surrounding. The
mass of the ideal fin examined differs but little from the mass of the fin of a triangular profile.

NOMENCLATURE
C, constant of integration;
D, diameter;
Q, heat flux per 1 m of fin base [W/m];
V, fin volume per 1 m of fin base [m?];
I, fin height (see Fig. 1);
49, = Q/Q,, dimensionless heat flux;
r,  radius (see Fig. 1);
v, dimensionless volume, see equation (6);
x, dimensionless coordinate, see equation (16);
o, heat-transfer coefficient;
A, =4/, dimensionless fin thickness;
4, fin thickness (see Fig. 1);
n, fin efficiency;
8, excessive fin temperature relative to the tem-
perature of the surrounding medium;
8, = 39/9,, dimensionless temperature;
4,  thermal conductivity;
p,  =r/l, dimensionless radius;
g, fin parameter, see equation (2);
o, = D,/D,, diameter ratio;

%, fin parameter, see equation (4).

Subscripts
1, fin base;
2, outer edge of fin.

INTRODUCTION

A GREAT variety of fins is possible which would differ in
size and shape but afford the same heat dissipation.
The problem is frequently optimized by the condition
that a minimum of material (mass) be expended for
fabrication of a fin with the prescribed heat dissipation.
For fins made of uniform material this problem is
reduced to the condition of a minimum volume. The
fins of a specified geometry are optimized on the
principle of determining their minimum volume. This
offers the possibility for a fin having the same heat
dissipation, but a different shape of the cross section, to
be of even smaller volume. Therefore, the problem of
complete minimization of the volume reduces to that
of finding the fin shape which is realized by the
methods of the calculus of variations.

For a straight fin the latter problem was solved by
Schmidt [1] as long ago as 1926 using the principle of a
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constant heat flux. The results of this work were
confirmed by Duffin [2,3] who applied a rigorous
variational approach. According to these publications,
the fin profile is defined by the equation of a parabola
and has a zero thickness at the outer edge with a
temperature not differing from that of the environment
surrounding (3, = 0). The above works also consider
the problem of optimization of a circular fin, but the
condition 3, = 0 applied proved to be invalid in this
case. Moreover, the problems of a straight and an
annular/circular fin are considered as separate ones
with the result that comparison between the data on
these types of fins in the limiting case of the increasing
inside and outside radii becomes complicated. A great
number of works have been reported to date in which
different aspects of the problem of fin optimization are
investigated with a variety of additional conditions
[1-7]. However, the above shortcomings are typical of
all these works.

In this paper, consideration is given to the problem
of optimization of a convective annular/circular fin
with regard for the remarks made and with application
of a one-dimensional mathematical model which,
according to [8], is permissible for sufficiently small
values of the Bi number.

MATHEMATICAL STATEMENT OF THE PROBLEM

The‘dependence of the dimensionless temperature,
0, dimensionless heat flux, q, and dimensionless fin
thickness, A, on the radius, p, is described by the
equations and additional conditions which incor-
porate the following dimensionless parameters of the
fin:

_n

‘/’—rx, 1
_ :

a_lal’ ( )
B Q4

=0+ Dadl )

The fin efficiency # is defined as the ratio of the mean
fin temperature 3 to the temperature of its base =
8/9,. 1t is frequently used to calculate heat dissipation
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of the fin by Newton’s formula. For the purpose of
performing an analytical investigation, the following
parameter can be used:

L= 55 > (4j

which is related to the previous parameters by the
formula

x=1{(o+ Hon. 4
The fin volume is expressed in dimensionless form as
0= Z— )
VO
where
3
Vo= 2/18219; ' @)

The equation for the radial thermal conductivity of
the fin (Fig. 1) is expressed, with equations (1)-(7)
taken into account, in the form

de
g =—(¢~1)Ap—, (8)

dp
while the equation for heat transfer from the fin
surfaces is written as
dq

¥— = — 2{p — 1)apb.

5 ©)

The variables ¢, 0, and A in equations (8) and (9) are
the functions of the independent variable p. Their
values for the inner boundary of an annular/circular
finatp = p; = 1/(¢ — 1) are obtained directly from

definitions of the dimensionless variables
g =8, =A; =1 (10)

Moreover, it follows from (8) and (9) that

(@)
dp P =

(dq) 2
dp 0= X )

\

Il

- I (11)

(12)

An additional condition for the outer edge of the fin
atp = p, = @/(¢ — 1)is the absence of heat flux,

q=0. (13)

In order to find a particular solution for the system
of equations (8)-(9), it is necessary to have, besides
(13), a second additional condition for 8 at the outer fin
edge at p = p,. Since ordinarily the thickness of the
optimized fins A, = 0, it follows from (8) and (9) that
0, at the outer fin edge should not necessarily be 8, =
0. Therefore, the second condition to determine the
integration constants in (8) and (9) can be expressed at
p = p, in a general form as

0=0,. (14)

And finally, in order that the system of equations
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(8)-(9) could be integrated, the function A = A(p)
should be known.

The problem of optimization was considered in
detail in [1,2]. By solving the variational problem it
was proved that the profile of a fin of minimum volume
is characterized by a constant temperature gradient.
This leads to a linear temperature distribution over the
radius

80=C+C'p. {15)
Replacing the coordinate p by
@
X= e p (16)
(p~1)
and applying the conditions (10), (11) yield
de
— = ¥ = constant, (17)
dx
O0=01—yx+ xx (18)

Thus, for the outer fin edge we get from (14) and (18)

0, =1-7y (19)

It follows from (19) that if the temperature is
distributed according to (18), the quantity 6, is
unambiguously determined in terms of y and is a
dimensionless parameter of the fin, like the foregoing
parameters x, a, 11, and ¢.

Equations (17) and (18) are expressed in terms of ¢,
as

—=1-10,

dx (20)

0 =0, + (1 —0,)x (21)

Equations (9) and (13) give for the heat flux:

2 2
g = L{‘Pezx + [p(1-0;) — (o 1)92]‘%

3
- (q)-nu_oz)%}. (22)

The condition g, = 1, (10), interrelates the fin
parameters as

2¢ (p+2)+ Q2o+ 1)8,

= 23
! 1-6, 6 (23)
and allows elimination of ¢ from (22):
= 6 { 0,x + [(1-0;)
1702+ e+ 16, 17 :
2 .X3
—(@—- l)ﬂz]i;~ —(p—1d —%);} (24)

According to (8), the fin profile is determined thus:
. S (25)

It follows from (25) that, by virtue of (13), the fin
thickness at the outer edge should really be A, = 0.
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In the above equations, the solutions depend on the
dimensionless fin parameters, which amount to five in
the present paper, viz. @, ¥, o, 11, 0,. These parameters
are interrelated by equations (5), (19), and (23). Thus,
an unambiguous solution of the problem is obtained
by assigning the values of two parameters. The pro-
blem as stated, when for an annular/circular fin with
the known ¢ it is necessary to find the condition of the
minimum volume, requires still another (fourth) equa-
tion relating the fin parameters. This is the condition of
the fin volume minimization

2(p ~ 1)o? J‘”
p=P =0

3 Ap dp = minimum.  (26)

P2
ANNULAR/CIRCULAR FIN OPTIMIZATION

In view of (8), (16) and (17), equation (26) can be
expressed as

2 1
u=3%-j g dx = min, @7)

X Jo

where the integral is easily integrated, with (24) taken
into account, and has the form

f‘ _20 (p+ 1)+ B +1)6;

. qdx . 0

Hence for the volume from (19), (23), (27), and (28) we
have

(28)

. I(e + 1)+ 3o + 1),
T (=600 +2) + 20 + 1)6,]*°

while the minimization of v with respect to 6, yields

i
0,

Realization of (30) provides an additional equation
to determine 8, :

330 + 1)02 — 2(¢ — 1)8, — (¢ — 1) = 0. (31)

The system of equations (5), (19), (23), and (31) gives
all of the optimized fin parameters, i.e. ¢, o, x, 1, 8,,
provided one of these is known.

After the solution of this system of equations, the
assumption that 8, = 0 at the outer edge of the fin
yields: ¢ = 1,y = 1,6 = 1, = 1/2. Since the limiting

(29)

=0. (30)
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FiG. 1. Schematic diagram of an annular/circular fin (¢ = 3).

case, ¢ = 1, corresponds to a fin over a straight base,
then the condition that #, = 0 is not true in the case of
the most minimum volume. It is interesting to note
'that it is at this point that a lot of misunderstandings
and erroneous view-points are encountered even in the
contemporary scientific literature.

This problem was investigated for the first time by
Schmidt [1]. Prior to the problem of an annular/cir-
cular fin, Schmidt considered in his works the problem
of optimization of the fin having a straight base. In this
case the temperature is first expressed in the general
form as a linear function. The solution of the
differential heat conduction equation gives the for-
mula for the fin thickness and then an equation is
composed for the fin volume {equation (18) p. 888 of
[1]} containing the unknown constants. For these to
be determined, Schmidt uses the formula for the heat
flux and resorts to minimization of his formula (18).
Only then the conclusion is drawn that the tempera-
ture difference at the outer edge of the fin with a
straight base should equal to zero for the minimum
volume to be realized. As regards the works of Schmidt
or annular/circular fins, these are less consistent. For
some unknown reasons, Schmidt used the result
obtained for the fin with a straight base and automati-
cally and without special verification adapted the
condition 6, = 0 to an annular/circular fin. The
formulae obtained by Schmidt in this way are cited in
the contemporary literature and are recommended as
formulae for an isogradient annular/circular fin of the
most minimum volume at the prescribed heat dissi-
pation. As it is, the assumption that 8, = 0 is

Table 1. Comparison between the dimensionless volumes of annular/circular fins
with minimum mass determined from Schmidt’s formulae [1] and the formulae of
the present author [(29], (31)] and circular fins of triangular profile [10]

Dimensionless volume v

Present author’s

Triangular cross

) Schmidt’s data data section
1 0.6667 0.6667 0.7037
2 0.4219 0.3937 0.4143
3 0.2880 0.2510 0.2708
4 0.2083 0.1725 0.191t
5 0.1574 0.1255 0.1426
6 0.1230 0.0952 0.1109
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Profile according to
equation (25)

@ o n t 4

I 10000 05000 06667 08574
15 05497 05771 0.5094  0.6143
2 04084 05950 03937 04941
25 03267 06048 03111 04232
3 02727 06111 02510 03758
4 02053 06188 01725 03169
5 01647 06234 01255 02814
6 01376 06265 _ 00952 02571
. o 1E2J100 0

A

equivalent to replacing equation (31) by an arbitrary
additional condition to determine the dimensionless
fin parameters. The fact that ¢, = Oisin error is vividly
illustrated in Table 1, where the dimensionless vo-
lumes of fins are presented and comparison is made
between the case considered in the present paper, that
described by Schmidt (#, = 0} and the case of the fin of
a triangular cross section {non-isogradient profile).

It is seen from Table 1 that at ¢ = 1 the results of
Schmidt and the results of the present author coincide.
But already at ¢ = 2 Schmidt’s formulae overestimate
the values of v not only as compared with the results of
the present paper, but also with the volume of the fin of
a triangular cross section.

CONCLUSION

As a result of the foregoing analysis, the method has
been developed for determining the optimum fin with a
minimum volume at the prescribed heat flux. Since
fabrication of complex-profiled fins (Fig. 1) involves
some difficulties, the fins of constant thickness have
found application in practice as well as the fins of
triangular and trapezoidal profiles. In this regard, the
optimized fin investigated above may be looked upon
as an idealized standard for the determination of the
adequacy of fins of other shapes. Table 2 contains the
parameters o, 7, and relative volumes v. The para-
meters are presented for a convective annular/circular
fin with a profile described by (25) and for annular/cir-
cular fins with a minimum volume having a constant
thickness or a triangular profile [9, 10]. It follows from
Table 2 that the parameters of the fin with a triangular
profile are only slightly worse than those of an ideal fin.
The volume of a fin with a triangular profile exceeds
that of an ideal one by about 5.6% at ¢ = 1 and by
16.5%, at ¢ = 6.

The data in Table 2 can be used in designing finned
heating surfaces since the principal dimensions of the

Table 2. Optimum parameters of annular/circular fins

Triangular profile

Note: ¢ = 1 corresponds to a fin with a straight base.

1. Mikx

Fin of constant thickness

n v 9 N v
05917  0.7037 1.0071 0.6267 1.0085
06116  0.5312 07657 06362 08115
06225 04143 06328 06426 06618
0.6296  0.3312 05507  0.6462  0.5493
0.6349 02708  0.4944  0.6488 04628
06416 01911 04208  0.6522  0.3426
06457  0.1426 03741  0.6546  0.2646
0.6484  0.1109 03410 0.6564 02116
2/3 0 0 2/3 0

optimum fins at the prescribed ¢ are determined by
formulae (2) and (3) in the present paper,

44

l= (32
adn(e + 1) )
12
61 = L s ‘33)
A
N (34)
e —1)

When the radius r; of a cylinder (tube) with an
annular/circular fin is assigned, then formulae (32) and
(34) yield

9

. 35
adyry (33)

(@* =)y =

On having supplemented Table 2 with the column
(@* — 1)n we may interpolate the optimum values of @,
o, and 5, and then determine ! and §, from formulae
(33) and (34).

REFERENCES

1. E. Schmidt, Die Wiarmetbertragung durch Rippen, £.
Ver. dt. Ing. 70(26), 885889, (28), 947-951 (1926).

2. R. J. Duffin, A variational problem relating to cooling
fins, J. Math. Mech. 8, 47-56 (1959).

3. R. J. Duffin and D. K. McLain, Optimum shape of a
cooling fin on a convex cylinder, J. Math. Mech. 17,
769-784 (1968).

4. P. 1. Dhar and C. P. Arora, Optimum design of finned
surfaces, J. Franklin Inst. 301, 379-392 (1976).

5. Earl R. Barnes, A variational problem arising in the
design of cooling fins, Q. appl. Math. 34, 1-17 (1976).

6. M. H. Cobble, Optimum fin shape, J. Franklin Inst. 291,
283-292 (1971).

7. O. N. Favorsky and Ya. S. Kadaner, Problems of Heat
Transfer in Space. Izd. Vysshaya Shkola, Moscow (1967).

8. A. A. Sfeir, The heat balance integral in steady-state
conduction, J. Heat Transfer (Russian translation) 98C,
136-141 (1976).

9. A.Brown, Optimum dimensions of uniform annular fins,

Int. J. Heat Mass Transfer 8, 655-662 (1965).

1. R. Mikk, Efficiency of convective round fins with a

triangular profile, J. Engng Physics 32, 703-707 (1977).

10.



Convective fin of minimum mass

CONVECTION D’'UNE AILETTE DE MASSE MINIMALE

Résumé — On considére le probléme de la réduction de la masse d’une ailette annulaire/circulaire et

convectante pour une valeur donnée du flux thermique. Le cas limite de I'optimum est obtenu pour une

température du bord extérieur différente de celle de I'environnement. La masse de lailette idéale différe
légérement de la masse d’une ailette a profil triangulaire.

EINE WARMEUBERTRAGUNGSRIPPE MIT MINIMALER MASSE

Zusammenfassung—Es wird das Problem behandelt, die Masse einer kreisringformigen Warmeiibertra-

gungsrippe bei vorgegebenem Wirmestrom auf ein Minimum zu reduzieren. Fiir das ermittelte Minimum

unterscheidet sich die Temperatur an der Rippenspitze von der Umgebungstemperatur. Die Masse der

ermittelten idealen Rippe weicht jedoch nur wenig von derjenigen einer Rippe mit dreieckigem Querschnitt
ab.

KOHBEKTHUBHOE PEEPO C MUHHUMAJIBHON MACCOH

Annoramma — PaccmatpuBaercs npo6iieMa MHHHMM3AIIHH MacChl KOHBEKTHBHOTO Kpyrioro pebpa npu

3aZaHHON BEIMYMHE TENIOBOro notoka. IpeaebHblil ciiydail MUHHMH3AIMH NOJTyYeH IPH TEMIEPATYpE

BHeElIHeH rpaHuubl pebpa, He paBHOH TeMnepaType OkpyXeHHs: Macca pacCMOTPEHHOTO HACAILHOTO
pebpa oTIHYAETCS JIHIIb HE3HAYUTENBHO OT MacChl peOpa TPeyronbHOro npoduis.
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