
Inr. J. Hear Muss Tmns/er. Vol. 23, pp. 707-711 
Pcrgamon Press Ltd. 1980. Printed in Great Britain 
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Abstract - The problem of reducing to a minimum the mass of a convective annular/circular fin at the 
prescribed magnitude of the heat flux is considered. The limiting case of minimization is obtained at the 
temperature of the outer edge of the fin differing from the temperature of the environment surrounding. The 

mass of the ideal fin examined differs but little from the mass of the fin of a triangular profile. 

NOMENCLATURE 

constant of integration; 
diameter ; 
heat flux per 1 m of fin base [W/m] ; 
fin volume per 1 m of fin base [m’] ; 
fin height (see Fig. 1); 
= Q/Q1, dimensionless heat flux; 
radius (see Fig. 1); 
dimensionless volume, see equation (6); 
dimensionless coordinate, see equation (16); 
heat-transfer coefficient ; 
= 6/d,, dimensionless fin thickness; 
fin thickness (see Fig. 1); 
fin efficiency; 
excessive fin temperature relative to the tern 
perature of the surrounding medium; 
= 9/& dimensionless temperature; 
thermal conductivity; 
= r/l, dimensionless radius; 
fin parameter, see equation (2); 
= DJD,, diameter ratio; 
fin parameter, see equation (4). 

Subscripts 

1, fin base; 

2, outer edge of fin. 

INTRODUCTION 

A GREAT variety of fins is possible which would differ in 
size and shape but afford the same heat dissipation. 
The problem is frequently optimized by the condition 
that a minimum of material (mass) be expended for 
fabrication of a fin with the prescribed heat dissipation. 
For fins made of uniform material this problem is 
reduced to the condition of a minimum volume. The 
fins of a specified geometry are optimized on the 
principle of determining their minimum volume. This 
offers the possibility for a fin having the same heat 
dissipation, but a different shape of the cross section, to 
be of even smaller volume. Therefore, the problem of 
complete minimization of the volume reduces to that 
of finding the tin shape which is realized by the 
methods of the calculus of variations. 

For a straight fin the latter problem was solved by 
Schmidt [l] as long ago as 1926 using the principle of a 

constant heat flux. The results of this work were 
confirmed by Duffin [2,3] who applied a rigorous 
variational approach. According to these publications, 
the fin profile is defined by the equation of a parabola 
and has a zero thickness at the outer edge with a 
temperature not differing from that of the environment 
surrounding (g2 = 0). The above works also consider 
the problem of optimization of a circular fin, but the 
condition Q2 = 0 applied proved to be invalid in this 
case. Moreover, the problems of a straight and an 
annular/circular fin are considered as separate ones 
with the result that comparison between the data on 
these types of fins in the limiting case of the increasing 
inside and outside radii becomes complicated. A great 
number of works have been reported to date in which 
different aspects of the problem of fin optimization are 
investigated with a variety of additional conditions 
[l-7]. However, the above shortcomings are typical of 
all these works. 

In this paper, consideration is given to the problem 
of optimization of a convective annular/circular fin 
with regard for the remarks made and with application 
of a one-dimensional mathematical model which, 
according to [8], is permissible for sufficiently small 
values of the Bi number. 

MATHEMATICAL STATEMENT OF THE PROBLEM 

The‘dependence of the dimensionless temperature, 
8, dimensionless heat flux, q, and dimensionless fin 
thickness, A, on the radius, p, is described by the 
equations and additional conditions which incor- 
porate the following dimensionless parameters of the 
fin: 

al2 

g=16,’ 

Qi 
’ = (rp + l)a9,1’ 

(1) 

(2) 

The fin efficiency q is defined as the ratio of the mean 
fin temperature g to the temperature of its base q = 
g/J?,. It is frequently used to calculate heat dissipation 
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of the fin by Newton’s formula. For the purpose of 
performing an analytical investigation, the following 
parameter can be used: 

(4) 

which is related to the previous parameters by the 
formula 

x = (50 + l)W (5) 

The fin volume is expressed in dimensionless form as 

(8)-(9) could be integrated, the function A = A(p) 
should be known. 

The problem of optimization was considered in 
detail in [l, 21. By solving the variational problem it 
was proved that the profile of a fin of minimum volume 
is characterized by a constant temperature gradient. 
This leads to a linear temperature distribution over the 
radius 

0 = c’ + C”p. i.151 

Replacing the coordinate p by 

where and applying the conditions (lo), (I 1) yield 

Q: v/o = __ 
2ia=9: . (7) (17) 

The equation for the radial thermal conductivity of 
the fin (Fig. 1) is expressed, with equations (l)-(7) 

Q = (1 - 1) + xx. (18) 

taken into account, in the form Thus, for the outer fin edge we get from (14) and (18) 

xq = - (cp - ,)A/$, 
o2 = 1 - x. (19) 

(8) 
It follows from (19) that if the temperature is 

while the equation for heat transfer from the fin distributed according to (18), the quantity f32 is 

surfaces is written as unambiguously determined in terms of x and is a 
dimensionless parameter of the fin, like the foregoing 

x- = - 2((p - l)fJpB. 
dp 

(9) parameters x, u, 7, and cp. 
Equations (17) and (18) are expressed in terms of 0, 

The variables q, 0, and A in equations (8) and (9) are 
as 

the functions of the independent variable p. Their d@ 

values for the inner boundary of an annular/circular - = I - 82, 
dx 

(20) 

fin at p = p1 = l/(cp - 1) are obtained directly from 
definitions of the dimensionless variables 0 = (3, + (1 - &)s. (21) 

q1 = 8, = A1 = 1. 
Equations (9) and (13) give for the heat flux : 

Moreover, it follows from (8) and (9) that ‘po2x + [cp(l-0,) - (~-l,s,l;~ 

,,=,,, = -” 
(11) 

-(q-1)(1-0,): 

(12) 

An additional condition for the outer edge of the fin 
at p = pz = cp/(cp - 1) is the absence of heat flux, 

q = 0. (13) 

In order to find a particular solution for the system 
of equations (8)-(9), it is necessary to have, besides 
(13), a second additional condition for 0 at the outer fin 
edge at p = p2. Since ordinarily the thickness of the 
optimized fins A, = 0, it follows from (8) and (9) that 
0= at the outer fin edge should not necessarily be e2 = 
0. Therefore, the second condition to determine the 
integration constants in (8) and (9) can be expressed at 
p = p2 in a general form as 

0 = 0,. (14) 

And finally, in order that the system of equations 

The condition q1 = 1, (lo), interrelates the fin 
parameters as 

20 
l=- 

(cp + 2) + (2rp + l)& --.- -- 1 - (32 6 (23) 

and allows elimination of cr from (22): 

6 
9 = ((p+2j + (?&+ 1)8, @2x + [lcp(l-Q2) 

-(p--1)0,,; - (p-1)(1-B,); (24) 

According to (8), the fin profile is determined thus: 

A=-- q 

cp - (cp - ljx 
(25) 

It follows from (25) that, by virtue of (13j, the fin 
thickness at the outer edge should really be AZ = 0. 
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In the above equations, the solutions depend on the 
dimensionless fin parameters, which amount to five in 
the present paper, viz. rp, x, Q, q, f12. These parameters 
are interrelated by equations (5), (19), and (23). Thus, 
an unambiguous solution of the problem is obtained 
by assigning the values of two parameters. The pro- 
blem as stated, when for an annular/circular fin with 
the known cp it is necessary to find the condition of the 
minimum volume, requires still another (fourth) equa- 
tion relating the fin parameters. This is the condition of 
the fin volume minimization 

2(fJ - l)crZ Q2 
v= 

s x3 PZ 
Ap dp = minimum. (26) 

ANNULAR/CIRCULAR FIN OPTIMIZATION 

In view of (8) (16) and (17), equation (26) can be 
expressed as 

q dx = min, (27) 

where the integral is easily integrated, with (24) taken 
into account, and has the form 

s 1 20 (cp + 1) + (3rp + 1)82 

qdx=X 12 
(28) 

0 

Hence for the volume from (19), (23), (27) and (28) we 
have 

9[(cp + 1) + (3V + lY92 

’ = (1 - e,)[(p + 2) + (2~ + i)e,]3 ’ (2g) 

while the minimization of v with respect to e2 yields 

au - 0. z&- 
Realization of (30) provides an additional equation 

to determine e2 : 

3(3~ + i)e: - 2((p - l)e, - (up - 1) = 0. (31) 

The system of equations (S), (19), (23), and (31) gives 
all of the optimized fin parameters, i.e. cp, u, 1, q, tV2, 
provided one of these is known. 

After the solution of this system of equations, the 
assumption that e2 = 0 at the outer edge of the fin 
yields : rp = 1,~ = 1, u = 1, q = l/2. Since the limiting 

iI k. 

FIG. 1. Schematic diagram of an annular/circular fin (cp = 3). 

case, cp = 1, corresponds to a fin over a straight base, 
then the condition that e2 = 0 is not true in the case of 
the most minimum volume. It is interesting to note 
‘that it is at this point that a lot of misunderstandings 
and erroneous view-points are encountered even in the 
contemporary scientific literature. 

This problem was investigated for the first time by 
Schmidt [l]. Prior to the problem of an annular/cir- 
cular fin, Schmidt considered in his works the problem 
of optimization of the fin having a straight base. In this 
case the temperature is first expressed in the general 
form as a linear function. The solution of -the 
differential heat conduction equation gives the for- 
mula for the fin thickness and then an equation is 
composed for the fin volume {equation (18) p. 888 of 
[l]} containing the unknown constants. For these to 
be determined, Schmidt uses the formula for the heat 
flux and resorts to minimization of his formula (18). 
Only then the conclusion is drawn that the tempera- 
ture difference at the outer edge of the fin with a 
straight base should equal to zero for the minimum 
volume to be realized. As regards the works of Schmidt 
or annular/circular fins, these are less consistent. For 
some unknown reasons, Schmidt used the result 
obtained for the fin with a straight base and automati- 
cally and without special verification adapted the 
condition t12 = 0 to an annular/circular fin. The 
formulae obtained by Schmidt in this way are cited in 
the contemporary literature and are recommended as 
formulae for an isogradient annular/circular fin of the 
most minimum volume at the prescribed heat dissi- 
pation. As it is, the assumption that e2 = 0 is 

Table 1. Comparison between the dimensionless volumes of annular/circular fins 
with minimum mass determined from Schmidt’s formulae [l] and the formulae of 

the present author [(29], (31)] an d circular fins of triangular profile [lo] 

Dimensionless volume u 
Present author’s Triangular cross 

cp Schmidt’s data data section 

1 0.6667 0.6667 0.7037 
2 0.4219 0.3937 0.4143 
3 0.2880 0.2510 0.2708 
4 0.2083 0.1725 0.1911 
5 0.1574 0.1255 0.1426 
6 0.1230 0.0952 0.1109 
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Table 2. Optimum parameters of annular/circular fins 

Profile according to 
equation (25) Triangular profile Fin of constant thickness 

cp rJ ‘1 1’ I? II c 0 ?f / 

I 1.0000 
1.5 0.5497 
2 0.4084 
2.5 0.3267 
3 0.2121 
4 0.2053 
5 0.1647 
6 0.1376 

% 0 

0.5000 0.6667 
0.577 1 0.5094 
0.5950 0.3937 
0.6048 0.31 I1 
0.6111 0.2510 
0.6188 0.1725 
0.6234 0.1255 
0.6265 0.0952 

11+2,/iO o 
3-l 

0.8574 0.5917 0.7037 1.0071 0.6267 1.0085 
0.6143 0.6116 0.5312 0.7657 0.6362 0.8115 
0.4941 0.6225 0.4143 0.6328 0.6426 0.66 18 
0.4232 0.6296 0.3312 0.5507 0.6462 0.5493 
0.3758 0.6349 0.2708 0.4944 0.6488 0.4628 
0.3169 0.6416 0.1911 0.4208 0.6522 0.3426 
0.2814 0.6457 0.1426 0.3741 0.6546 0.2646 
0.2571 0.6484 0.1109 0.3410 0.6564 0.21 16 

0 213 0 0 2; (I 

Note: cp = 1 corresponds to a fin with a straight base. 

equivalent to replacing equation (31) by an arbitrary 
additional condition to determine the dimensionless 
fin parameters. The fact that e2 = 0 is in error is vividly 
illustrated in Table 1, where the dimensionless vo- 
lumes of fins are presented and comparison is made 
between the case considered in the present paper, that 
described by Schmidt (Q2 = 0) and the case of the fin of 
a triangular cross section (non-isogradient profile). 

It is seen from Table 1 that at cp = 1 the results of 
Schmidt and the results of the present author coincide. 
But already at cp = 2 Schmidt’s formulae overestimate 
the values of u not only as compared with the results of 
the present paper, but also with the volume of the fin of 
a triangular cross section. 

CONCLUSION 

As a result of the foregoing analysis, the method has 
been developed for determining the optimum fin with a 
minimum volume at the prescribed heat flux. Since 
fabrication of complex-profiled fins (Fig. 1) involves 
some difficulties, the fins of constant thickness have 
found application in practice as well as the fins of 
triangular and trapezoidal profiles. In this regard, the 
optimized fin investigated above may be looked upon 
as an idealized standard for the determination of the 
adequacy of fins of other shapes. Table 2 contains the 
parameters 0, q, and relative volumes V. The para- 
meters are presented for a convective annular/circular 
fin with a profile described by (25) and for annular/cir- 
cular fins with a minimum volume having a constant 
thickness or a triangular profile [9, lo]. It follows from 
Table 2 that the parameters of the fin with a triangular 
profile are only slightly worse than those of an ideal fin. 
The volume of a fin with a triangular profile exceeds 
that of an ideal one by about 5.6% at cp = 1 and by 
16.5% at cp = 6. 

The data in Table 2 can be used in designing finned 
heating surfaces since the principal dimensions of the 

optimum fins at the prescribed cp are determined by 
formulae (2) and (3) in the present paper, 

(32) 

When the radius r1 of a cylinder (tube) with an 
annular/circular fin is assigned, then formulae (32) and 
(34) yield 

On having supplemented Table 2 with the column 
((p’ - 1)~ we may interpolate the optimum values ofq, 
0, and v, and then determine I and 6, from formulae 
(33) and (34). 
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CONVECTION DUNE AILETTE DE MASSE MINIMALE 

R&sum& - On considtre le probleme de la reduction de la masse d’une ailette annulaire/circulaire et 
convectante pour une valeur don&e du flux thermique. Le cas limite de l’optimum est obtenu pour une 
tempkrature du bord exterieur differente de celle de I’environnement. La masse de l’ailette idiale differe 

legtrement de la masse d’une ailette a profil triangulaire. 

EINE WARMEUBERTRAGUNGSRIPPE MIT MINIMALER MASSE 

Zusammenfassung-Es wird das Problem behandelt, die Masse einer kreisringfiirmigen Wlrmeiibertra- 
gungsrippe bei vorgegebenem WPrmestrom auf ein Minimum zu reduzieren. Fur das ermittelte Minimum 
unterscheidet sich die Temperatur an der Rippenspitze von der Umgebungstemperatur. Die Masse der 
ermittelten idealen Rippe weicht jedoch nur wenig von derjenigen einer Rippe mit dreieckigem Querschnitt 

ab. 

KOHBEKTHBHOE PE6PO C MHHWMAJIbHOH MACCOii 

AHHOTauW-PaCCMaTpHBaeTCx npo6nehla MHHUMH3aUUH MaCCbI KOHBeKTWBHOrO Kpj’rJIOrO pe6pa npn 
3anaHHo~senwwHeTennoaoronoToKa.IlpenenbHbSicny~a~ iwiwiM83auki~nony~eHnpeTeMnepaType 

BHCmHefi t-pGiH&XubI pe6pa, He paBHOiS TeMIlepaType OKpyXeHAK: Macca paCCMOTpeHHOr0 IlAeaJIbHOrO 

pe6pa OTJIWIaeTCII JUimb He3HaWiTeJlbHOOT MaCCbI pe6pa T~yrOJIbHOrOIIpO@in% 


